It is possible for you to accelerate your learning simply by unlocking your your potential. Creativity allows you to unlock your true potential and in this post you are going to learn how to do this.

You know Richard Feynman, the bongo-playing, Nobel Prize–winning physicist, was a happy-go-lucky guy. But there were a few years—the best and worst of his life—when his exuberance was challenged.

In the early 1940s, Feynman’s beloved wife, Arlene, lay in a distant hospital, deathly ill with tuberculosis. He only rarely could get away to see her because he was in the isolated New Mexico town of Los Alamos, working on one of the most important projects of World War II—the top-secret Manhattan Project. Back then, Feynman was nobody famous. No special privileges were afforded him.

To help keep his mind occupied when his workday ended and anxiety or boredom reared its head, Feynman began a focused effort to peer into people’s deepest, darkest secrets: He began figuring out how to open safes.

Becoming an accomplished safecracker isn’t easy. Feynman developed his intuition, mastering the internal structures of the locks, practicing like a concert pianist so his fingers could swiftly run through remaining permutations if he could discover the first numbers of a combination. Eventually, Feynman happened to learn of a professional locksmith who had recently been hired at Los Alamos—a real expert who could open a safe in seconds.

An expert, right at hand! Feynman realized if only he could befriend this man, the deepest secrets of safecracking would be his.

In our previous posts we’ve explored new ways of looking at how you learn. Sometimes, as we’ve discovered, your desire to figure things out right now is what prevents you from being able to figure things out. It’s almost as if, when you reach too quickly with your right hand, your left hand automatically latches on and holds you back.

Great artists, scientists, engineers, and chess masters like Magnus Carlsen tap into the natural rhythm of their brains by first intently focusing their attention, working hard to get the problem well in mind. Then they switch their attention elsewhere. This alternation between focused and diffuse methods of thinking allows thought clouds to drift more easily into new areas of the brain. Eventually, snippets of these clouds—refined, refluffed—can return with useful parts of a solution.

Reshaping your brain is under your control. The key is patient persistence—working knowledgeably with your brain’s strengths and weaknesses.

You can improve your focusing ability by gently redirecting your responses to interrupting cues like your phone’s ring or the beep of a text message. The Pomodoro—a brief, timed period of focused attention—is a powerful tool in diverting the well-meaning zombies of your habitual responses. Once you’ve done a bout of hard, focused work, you can then really savor the mental relaxation that follows.

The result of weeks and months of gradual effort? Sturdy neural structures with well-cured mortar laid between each new learning period. Learning in this way, with regular periods of relaxation between times of focused attention, not only allows us to have more fun, but also allows us to learn more deeply. The relaxation periods provide time to gain perspective—to synthesize both the context and the big picture of what we are doing.

Be mindful that parts of our brain are wired to believe that whatever we’ve done, no matter how glaringly wrong it might be, is just fine, thank you very much. Indeed, our ability to fool ourselves is part of why we check back—Does this really make sense?—before turning in an examination. By ensuring that we step back and take fresh perspectives on our work, by testing ourselves through recall, and by allowing our friends to question us, we can better catch our illusions of competence in learning. It is these illusions, as much as any real lack of understanding, that can trip us up en route to success in studying math and science.

Rote memorization, often at the last minute, has given many lower-level learners the illusory sense that they understand math and science. As they climb to higher levels, their weak understanding eventually crumbles. But our growing understanding of how the mind truly learns is helping us move past the simplistic idea that memorization is always bad. We now know that deep, practiced internalization of well-understood chunks is essential to mastering math and science. We also know that, just as athletes can’t properly develop their muscles if they train in last-minute cramming sessions, students in math and science can’t develop solid neural chunks if they procrastinate in their studies.

No matter what our age and degree of sophistication, parts of our brain remain childlike. This means that we sometimes can become frustrated, a signal to us to take a breather. But our ever-present inner child also gives us the potential to let go and use our creativity to help us visualize, remember, make friends with, and truly understand concepts in math and science that at first can seem terribly difficult.

In a similar way, we’ve found that persistence can sometimes be misplaced that relentless focus on a problem blocks our ability to solve that problem. At the same time, big-picture, long-term persistence is key to success in virtually any domain. This kind of long-term stick-to-it-iveness is what can help get us past the inevitable naysayers or unfortunate vicissitudes of life that can temporarily make our goals and dreams seem too far to grasp.

A central theme of this book is the paradoxical nature of learning. Focused attention is indispensable for problem solving—yet it can also block our ability to solve problems. Persistence is key—but it can also leave us unnecessarily pounding our heads. Memorization is a critical aspect of acquiring expertise but it can also keep us focused on the trees instead of the forest. Metaphor allows us to acquire new concepts—but it can also keep us wedded to faulty conceptions.

Study in groups or alone, start hard or start easy, learn concretely or in abstract, success or failure . . . In the end, integrating the many paradoxes of learning adds value and meaning to everything we do.

Part of the magic long used by the world’s best thinkers has been to simplify—to put things into terms that even a kid brother or sister can understand. This, indeed, was Richard Feynman’s approach; he challenged some of the most esoteric theoretical mathematicians he knew to put their complicated theories in simple terms.

It turned out they could. You can, too. And like both Feynman and Santiago Ramón y Cajal, you can use the strengths of learning to help reach your dreams.

AS FEYNMAN CONTINUED to refine his safecracking skills, he befriended the professional locksmith. Through time and talk, Feynman gradually swept away superficial pleasantries, digging deeper and deeper so that he could understand the nuance behind what he saw to be the locksmith’s utter mastery.

Late one night, at long last, that most valuable of arcane knowledge became clear.

The locksmith’s secret was that he was privy to the manufacturers’ default settings.

By knowing the default settings, the locksmith was often able to slip into safes that had been left unchanged since they’d arrived from the manufacturer. Whereas everyone thought that safecracking wizardry was involved, it was a simple understanding of how the device arrived from the manufacturer that was fundamental.

Like Feynman, you can achieve startling insights into how to understand more simply, easily, and with less frustration. By understanding your brain’s default settings—the natural way it learns and thinks—and taking advantage of this knowledge, you, too, can become an expert.

In my previous posts, I mentioned that there are simple mental tricks that can bring math and science into focus, tricks that are helpful not only for people who are bad at math and science but also for those who already good at it. You’ve walked through all these tricks in the course of reading this book. But, as you now know, nothing beats grasping the chunked and simplified essence. So what follows sums up my final thoughts—the chunked essence of some of the central ideas in this book, distilled into the ten best and worst rules of studying.

Remember—Lady Luck favors the one who tries. A little insight into learning how to learn best doesn’t hurt, either.