This technique called “Transfer Technique’ Is really useful when it comes to generating new ideas for personal or business growth.

Transfer is the ability to take what you learn in one context and apply it to something else. For example, you may learn one foreign language and then find that you can pick up a second foreign language more easily than the first. That’s because when you learned the first foreign language, you also acquired general language-learning skills, and potentially similar new words and grammatical structures, that transferred to your learning the second foreign language.

Learning math by applying it only to problems within a specific discipline, such as accounting, engineering, or economics, can be a little like deciding that you are not really going to learn a foreign language after all—you’re just going to stick to one language and just learn a few extra English vocabulary words. Many mathematicians feel that learning math through entirely discipline-specific approaches makes it more difficult for you to use mathematics in a flexible and creative way.

Mathematicians feel that if you learn math the way they teach it, which centers on the abstract, chunked essence without a specific application in mind, you’ve captured skills that are easy for you to transfer to a variety of applications. In other words, you’ll have acquired the equivalent of general language-learning skills. You may be a physics student, for example, but you could use your knowledge of abstract math to quickly grasp how some of that math could apply to very different biological, financial, or even psychological processes.

This is part of why mathematicians like to teach math in an abstract way, without necessarily zooming in on applications. They want you to see the essence of the ideas, which they feel makes it easier to transfer the ideas to a variety of topics. It’s as if they don’t want you to learn how to say a specific Albanian or Lithuanian or Icelandic phrase meaning I run but rather to understand the more general idea that there is a category of words called verbs, which you conjugate.

The challenge is that it’s often easier to pick up on a mathematical idea if it is applied directly to a concrete problem—even though that can make it more difficult to transfer the mathematical idea to new areas later. Unsurprisingly, there ends up being a constant tussle between concrete and abstract approaches to learning mathematics. Mathematicians try to hold the high ground by stepping back to make sure that abstract approaches are central to the learning process. In contrast, engineering, business, and many other professions all naturally gravitate toward math that focuses on their specific areas to help build student engagement and avoid the complaint of “When am I ever going to use this?” Concretely applied math also gets around the issue that many “real-world” word problems in mathematics textbooks are simply thinly disguised exercises. In the end, both concrete and abstract approaches have their advantages and disadvantages.

Transfer is beneficial in that it often makes learning easier for students as they advance in their studies of a discipline. As Professor Jason Dechant of the University of Pittsburgh says, “I always tell my students that they will study less as they progress through their nursing programs, and they don’t believe me. They’re actually doing more and more each semester; they just get better at bringing it all together.

One of the most problematic aspects of procrastination—constantly interrupting your focus to check your phone messages, e-mails, or other updates—is that it interferes with transfer. Students who interrupt their work constantly not only don’t learn as deeply, but also aren’t able to transfer what little they do learn as easily to other topics. You may think you’re learning in between checking your phone messages, but in reality, your brain is not focusing long enough to form the solid neural chunks that are central to transferring ideas from one area to another.