Just as Olympic athletes don’t build their athletic prowess simply by spending a few hours jogging on the weekends or lifting a few weights in their spare time, chess grand masters don’t construct their neural structures through last-minute cramming. Instead, their knowledge base is gradually built over time and with plenty of practice that builds their understanding of big-picture context. Practice like this places the memory traces prominently in the warehouse of long-term memory, where the neural pattern can be quickly and easily accessed when needed. Let’s return to chess master Magnus Carlsen—that fast-thinking genius of speed chess as well as regular chess. Carlsen has an extraordinary grasp of the patterns of thousands of previously played chess games—he can look at the arrangement of an endgame on a chess board and instantly tell you which of more than ten thousand games of past centuries it was drawn from. In other words, Carlsen has created a vast chunked library of potential solution patterns. He can quickly riffle through the chunks to see what others have done when faced with situations similar to what he is facing. Carlsen isn’t unusual in what he is doing, although he does it better than all but a very few past and present chess players. It is typical for grand masters to spend at least a decade practicing and studying to learn thousands of memory chunk patterns. These readily available patterns allow them to recognize the key elements in any game setup much more quickly than amateurs; they develop a professional eye so they can rapidly intuit the best course of action in any situation. But wait. Aren’t chess masters and people who can multiply six-digit numbers in their heads simply exceptionally gifted? Not necessarily. I’m going to tell it to you straight—sure, intelligence matters. Being smarter often equates to having a larger working memory. Your hot rod of a memory may be able to hold nine things instead of four, and you latch onto those things like a bulldog, which makes it easier to learn math and science. But guess what? It also makes it more difficult for you to be creative. How is that? It’s our old friend and enemy—Einstellung. The idea you already are holding in mind blocks you from fresh thoughts. A superb working memory can hold its thoughts so tightly that new thoughts can’t easily peek through. Such tightly controlled attention could use an occasional whiff of ADHD-like fresh air—the ability, in other words, to have your attention shift even if you don’t want it to shift. Your ability to solve complex problems may make you overthink simple problems, going for the convoluted answer and overlooking the simple, more obvious solution. Research has shown that smart people can have more of a tendency to lose themselves in the weeds of complexity. People with less apparent intellectual horsepower, on the other hand, can cut more easily to simpler solutions. If you are one of those people who can’t hold a lot in mind at once—you lose focus and start daydreaming in lectures, and have to get to someplace quiet to focus so you can use your working memory to its maximum—well, welcome to the clan of the creative. Having a somewhat smaller working memory means you can more easily generalize your learning into new, more creative combinations. Because your working memory, which grows from the focusing abilities of the prefrontal cortex, doesn’t lock everything up so tightly, you can more easily get input from other parts of your brain. These other areas, which include the sensory cortex, not only are more in tune with what’s going on in the environment, but also are the source of dreams, not to mention creative ideas. You may have to work harder sometimes (or even much of the time) to understand what’s going on, but once you’ve got something chunked, you can take that chunk and turn it outside in and inside round —putting it through creative paces even you didn’t think you were capable of! Here’s another point to put into your mental chunker: Chess, that bastion of intellectuals, has some elite players with roughly average IQs. These seemingly middling intellects are able to do better than some more intelligent players because they practice more. That’s the key idea. Every chess player, whether average or elite, grows talent by practicing. It is the practice particularly deliberate practice on the toughest aspects of the material—that can help lift average brains into the realm of those with more “natural” gifts. Just as you can practice lifting weights and get bigger muscles over time, you can also practice certain mental patterns that deepen and enlarge in your mind. Interestingly, it seems that practice may help you expand your working memory. Researchers on recall have found that doing exercises to repeat longer and longer strings of digits backward seems to improve working memory. Gifted people have their own set of difficulties. Sometimes highly gifted kids are bullied, so they learn to hide or suppress their giftedness. This can be difficult to recover from. Smarter people also sometimes struggle because they can so easily imagine every complexity, good and bad. Extremely smart people are more likely than people of normal intelligence to procrastinate because it always worked when they were growing up, which means they are less likely to learn certain critical life skills early on. Whether you are naturally gifted or you have to struggle to get a solid grasp the fundamentals, you should realize that you are not alone if you think you are an impostor—that it’s a fluke when you happen to do well on a test, and that on the next test, for sure they (and your family and friends) are finally going to figure out how incompetent you really are. This feeling is so extraordinarily common that it even has a name—the “impostor phenomenon.” If you suffer from these kinds of feelings of inadequacy, just be aware that many others secretly share them. Everyone has different gifts. As the old saying goes, “When one door closes, another opens.” Keep your chin up and your eye on the open door.